Fast production of microfluidic devices by CO2 laser engraving of wax-coated glass slides.
نویسندگان
چکیده
Glass is one of the most convenient materials for the development of microfluidic devices. However, most fabrication protocols require long processing times and expensive facilities. As a convenient alternative, polymeric materials have been extensively used due their lower cost and versatility. Although CO2 laser ablation has been used for fast prototyping on polymeric materials, it cannot be applied to glass devices because the local heating causes thermal stress and results in extensive cracking. A few papers have shown the ablation of channels or thin holes (used as reservoirs) on glass but the process is still far away from yielding functional glass microfluidic devices. To address these shortcomings, this communication describes a simple method to engrave glass-based capillary electrophoresis devices using standard (1 mm-thick) microscope glass slides. The process uses a sacrificial layer of wax as heat sink and enables the development of both channels (with semicircular shape) and pass-through reservoirs. Although microscope images showed some small cracks around the channels (that became irrelevant after sealing the engraved glass layer to PDMS) the proposed strategy is a leap forward in the application of the technology to glass. In order to demonstrate the capabilities of the approach, the separation of dopamine, catechol and uric acid was accomplished in less than 100 s.
منابع مشابه
A simple and cost-effective method for fabrication of integrated electronic-microfluidic devices using a laser-patterned PDMS layer
We report a simple and cost-effective method for fabricating integrated electronic-microfluidic devices with multilayer configurations. A CO2 laser plotter was employed to directly write patterns on a transferred polydimethylsiloxane (PDMS) layer, which served as both a bonding and a working layer. The integration of electronics in microfluidic devices was achieved by an alignment bonding of to...
متن کاملWax-bonding 3D microfluidic chips.
We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes. The hot-melt adhesive wax can real...
متن کاملMultifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices.
Valving is critical in microfluidic systems. Among many innovative microvalves used in lab-on-a-chip applications, phase change based microvalves using paraffin wax are particularly attractive for disposable biochip applications because they are simple to implement, cost-effective and biocompatible. However, previously reported paraffin-based valves require embedded microheaters and therefore m...
متن کاملAn Efficient Covalent Coating on Glass Slides for Preparation of Optical Oligonucleotide Microarrays
Objective(s): Microarrays are potential analyzing tools for genomics and proteomics researches, which is in needed of suitable substrate for coating and also hybridization of biomolecules. Materials and Methods: In this research, a thin film of oxidized agarose was prepared on the glass slides which previously coated with poly-L-lysine (PLL). Some of the aldehyde groups of the activated aga...
متن کاملCompact 3D Microfluidic Channel Structures Embedded in Glass Fabricated by Femtosecond Laser Direct Writing
We demonstrate rapid fabrication of complex three-dimensional (3D) microfluidic channels with lengths up to ~6.0 cm within a tiny volume down to ~80 nl in glass substrates by femtosecond laser direct writing, which, to the best of our knowledge, is the longest microfluidic channel directly embedded in glass by femtosecond laser microprocessing. The fabrication mainly includes the following two ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electrophoresis
دوره 37 12 شماره
صفحات -
تاریخ انتشار 2016